
Researchers have in-
creasingly turned to

Virtual Reality Modeling Language
(VRML) to represent geographic
information. In VRML’s early days,
the result was a few toy examples
that did not scale well, such as
coarse, single-resolution elevation
grids. Today, VRML is drawing more
serious interest from researchers
across the spectrum, including geo-
graphers, cartographers, geologists,
and computer scientists, as the side-
bar “Related Work” describes. As
Theresa-Marie Rhyne noted, geo-

graphic information system (GIS) and scientific visual-
ization tools have begun to expand into each other’s

domains,1 and VRML offers cartographers and geogra-
phers the potential to disseminate 3D maps and spatial
data over the World Wide Web. However, to date we have
not seen useful large-scale VRML geographic databases.

We aim to enable visualization of near photorealistic
3D models of terrain that can be on the order of hun-
dreds of gigabytes. This might include different types of
terrain imagery for particular regions, as well as site
models and auxiliary information for ground features.

The following scenario indicates the capabilities
required. Say a user wants to find a particular building
in a particular city. Her journey begins with a 3D model
of the earth viewed from space. This model is texture-
mapped with satellite imagery of 100 kilometers reso-
lution—that is, each pixel in the texture map represents
a region on the planet’s surface covering 100 km2. To
find the city, the user first rotates the earth to view the

Martin Reddy, Yvan Leclerc, Lee Iverson,
and Nat Bletter
SRI International

TerraVision II:
Visualizing Massive
Terrain Databases
in VRML

0272-1716/99/$10.00 © 1999 IEEE

VRML

30 March/April 1999

To disseminate 3D maps and

spatial data over the Web,

we designed massive terrain

data sets accessible through

either a VRML browser or

the customized TerraVision

II browser.

Currently, interesting and significant work
addresses the problem of representing geographic
data in VRML. In the earth sciences, Kate Moore
described the work of the Virtual Field Course
(VFC) project,1 which is developing software tools
to familiarize students with fieldwork locations and
aid data collection and analysis. The VFC project
uses VRML and Java to provide interactive 2D and
3D views of geo-referenced data to enhance
students’ cognition of the real environment.

The US Naval Postgraduate School is currently
working on a project to develop a 3D model of the
Monterey Bay National Marine Sanctuary. They
aim to create a VRML representation of the
sanctuary based on raw bathymetry (below sea
level) data for a 2.5 × 2.5 degree region of the bay.
Their representation uses multiresolution
techniques to deliver these large data amounts
over a 28K modem connection.

Michael Abernathy and Sam Shaw described
their work using VRML to visualize the course for a
197-mile relay race through the San Francisco Bay
Area.2 They did this using standard US Geological
Survey (USGS) 7.5 arc min digital elevation
models (DEMs) for the terrain geometry with geo-
referenced satellite imagery draped over the
terrain. Their system also used Global Positioning
System (GPS) input to create a line segment
showing the race’s course over the VRML terrain.

References
1. K. Moore, “Interactive Virtual Environments for Field-

work,” British Cartographic Society Annual Symp., 1997;
available at http://www.geog.le.ac.uk/mek/VirtEnv.htm.

2. M. Abernathy and S. Shaw, “Integrating Geographic
Information in VRML Models,” Proc. Third Symp.
VRML, ACM New York, 1998, pp. 107-114.

Related Work

¶1

¶2

¶3

Microsoft Corp. Exhibit 1004

target region in more detail. As she zooms into the
region, higher resolution data, such as elevation and
imagery, are progressively downloaded and displayed
until she is “flying” over mountains with imagery down
to one-meter resolution. Over certain parts of the ter-
rain, alternative imageries are available, such as aerial
photographs; the user can select any image to view on
top of the terrain geometry. As she approaches a built-
up area, 3D models of buildings come into view. When
the user clicks on a building, information about it is dis-
played in a separate frame on the browser. Using this
method, the user locates the target building. Through-
out the navigation, the user’s location is displayed via
an active map interface that provides a context for the
landscape being viewed.

In setting out to achieve such capabilities, we identi-
fied four principal design criteria:

■ Scalability. Our design must scale to very large data
sets. Commonly, a geographic data set consists of
many millions of polygons and many gigabytes of
imagery.

■ Composability. Our data representation must allow
the introduction of multiple types of geo-referenced
data, including additional imagery, site models, cul-
tural features, and annotations. It also must let the
user switch between these on demand.

■ Efficiency. Users must be able to navigate the VRML
structures easily and efficiently using a standard
VRML browser or a customized browser that further
increases browsing efficiency.

■ Data interchange. We must develop generic data rep-
resentations for geo-referenced data in VRML. This
will let other geographic data providers produce data
using the same representation.

¶9 Guided by these requirements, we implemented this
functionality in a standard VRML browser for down-
loading data over the World Wide Web. We also devel-
oped a custom terrain visualization package called
TerraVision II that can browse these VRML data struc-
tures. Although not required to view the content,
TerraVision II lets the user perform specialized browser-
level optimizations that offer increased efficiency and
seamless interaction with the terrain data.

We designed our framework to simplify terrain data
maintenance and to let users dynamically select particu-
lar sets of geo-referenced data. Our implementation uses
Java scripting to extend VRML’s base functionality and
the External Authoring Interface to offer application-spe-
cific management of the virtual geographic environment.

To help develop standard techniques for solving geo-
graphical representation problems in VRML, coauthor
Lee Iverson formed and currently chairs the GeoVRML
group, an official Working Group of the Web3D Consor-
tium (http://www.ai.sri.com/geovrml). As a service to
the VRML community and the GeoVRML effort, we have
made freely available both the TerraVision II browser and
all of the tools we developed for generating VRML terrain
data sets. This includes the source code to all of our cus-
tom VRML nodes and the tsmApi library that we use to
generate the VRML data sets. The library is described in

the sidebar “The tsmApi Library” and is available along
with other materials and several example VRML data sets
at http://www.ai.sri.com/TerraVision.

Multiresolution terrain techniques
Terrain models are typically massive. For example, the

US Geological Survey produces digital elevation models
(DEMs) that contain a regular grid of 1,201 × 1,201 ele-
vation values for a 1-degree area of the earth’s surface.
Producing a simple polygonal representation of a single
DEM creates a model with more than 1.4 million poly-
gons. The time required to download and render such a
model would prohibit any real-time interaction using the
current generation of VRML browsers. It therefore
becomes essential to manage level of detail (LOD).

LOD techniques change a model’s complexity based
on some selection criteria, such as distance from the
viewpoint or projected screen size. The basic premise
for these criteria is that any distant detail that projects
to less than a single pixel on the screen will not generally
be visible. To implement this, we need a mechanism to
simplify a data set’s geometry and imagery.

Several polygon simplification algorithms work well
for terrain. However, many of these are view-indepen-
dent techniques that force the same degree of simplifi-
cation across the entire terrain.2,3 These are

IEEE Computer Graphics and Applications 31

The tsmApi Library
The Tile Set Manager Application Program

Interface (tsmApi) is a freely available C library
from SRI International. The library offers
functions for reading, writing, and generating
terrain data used by TerraVision II, including
functions for generating VRML versions of the
terrain data using the representations we
describe in the article.

Using the tsmApi library, users can create their
own VRML geographic data sets from several
supported input formats such as raw imagery,
Portable Bitmap (PBM) images, and Land
Analysis System (LAS) bitmaps. The library also
includes SRI’s fully re-entrant VRML 97 parser,
which can be used to parse VRML 97 files
efficiently into memory and to write these
structures back out to a VRML 97 file. Other
functions perform transformations between
various geographic coordinate systems, such as
Univeral Transverse Mercator (UTM), geodetic
(latitude/longitude), and earth-fixed geocentric,
based on code from the US National Imagery
and Mapping Agency’s Nimamuse product.

Precompiled tsmApi distributions are available
for Irix, Solaris, Linux, and other platforms. In
addition, the full C source code is available from
the tsmApi home page, which also includes full
API documentation, tutorials, format
specifications, and example source code. The
tsmApi Web page is at http://www.ai.sri.com/
tsmApi.

¶4

¶5

¶6

¶7

¶8

¶10

¶11

¶12

¶13

¶14

Microsoft Corp. Exhibit 1004

inappropriate for our application because switching to
the highest resolution still involves loading every point
of the original data set. Instead, we require a view-
dependent technique that lets us vary the degree of sim-
plification with respect to the current viewpoint.4,5 This
is often done using a hierarchical data structure, such
as a quad-tree. Further, the LOD algorithm must not
require access to the entire high-resolution version of
the data set, as that would limit us to viewing only data
sets that can fit on the user’s local storage system. Given
these requirements, a tiled, pyramid representation
best suits our needs.6-8

A pyramid is a multiresolution hierarchy for a data
set. For example, if the original image is 1024 × 1024
pixels, then the pyramid might contain the original
image along with down-sampled versions at resolutions
of 512 × 512 pixels, 256 × 256 pixels, 128 × 128 pixels,
and so on. As Figure 1a shows, each pyramid image is
then segmented into rectangular tiles, where all tiles
have the same pixel dimensions. A tile at a given pyra-
mid level will thus map onto four tiles on the next high-

er level; that is, at each higher resolution area, the tiles
cover half the geographical area of the previous level.

Using this representation, we can recursively resolve
certain data set regions in more detail than other
regions. For example, Figure 1b shows the lower-right
corner in high resolution with the surrounding regions
displayed in progressively lower resolution. Assuming
a tile size of 128 × 128 pixels, this example requires
downloading and rendering only 491 Kbytes (10 tiles)
instead of the entire 3.1-Mbyte high-resolution image.
If the user’s location is the bottom-right corner, then dis-
tant imagery is rendered at lower resolution than near
imagery and we have achieved distance-based LOD.

As Figure 2 shows, our image pyramids techniques
can be applied to elevation grids and other types of ter-
rain data. Because we use a tiled pyramid representa-
tion for the geometry and the imagery, we can optimize
the amount of data transferred over the network, the
number of polygons in the scene, and the amount of
memory required for texture maps. As a result, we need
only fetch and display data for the region that the user
is viewing, and only at a sufficient resolution for the
user’s viewpoint. This solution scales well to arbitrarily
large data sets because it effectively attempts to keep
the polygon count constant for any viewpoint.

Multiresolution data in VRML
We introduce four types of VRML files to represent a

large, tiled multiresolution hierarchy of the globe: ter-
rain tile files, feature files, geotile files, and tree files.
Figure 3 shows these files and their relationships. The
tree files recursively implement the LOD hierarchy by
inlining a single geotile file at one LOD and four higher
resolution tree files at the next LOD. The geotile file
inlines all of the feature and terrain tiles that cover a
geographical area and LOD. A terrain tile file contains
the actual elevation and image texture data for a given
image, geographical area, and LOD. Feature files
describe a geographical area’s objects, such as buildings
and roads. We discuss these relationships and their
advantages below.

VRML

32 March/April 1999

2 Using a tiled
pyramid struc-
ture to repre-
sent terrain
geometry.
Closer terrain is
represented in
higher fidelity
(more poly-
gons) than
distant terrain.

(a) (b)

1 An example
image pyramid
showing (a)
four different
resolutions of
an original
image, where
each level is
segmented into
128 × 128 pixel
tiles, and (b)
how this struc-
ture can be
used to alter the
image resolu-
tion in different
regions.

¶15

¶16

¶17

¶18

Microsoft Corp. Exhibit 1004

Tree files
Tree files implement part of the multiresolution hier-

archy for the entire globe. In effect, these files are the
glue that holds the geotiles in the quad-tree structure. A
tree file initially loads a single geotile, but when the user
approaches the tile, it’s replaced with four higher-reso-
lution tree files, which in turn inline the geotiles for the
four quad-tree children. (At the bottom level of the tree
hierarchy, the four geotiles are inlined directly.) The
hierarchy of tree files must be generated only once and
won’t generally need to be modified further—except
perhaps to extend the tree for higher resolutions at a
later juncture. In the future, it might be possible to gen-
erate tree files on the fly.

The tree files let us split the entire LOD hierarchy over
multiple files and abstract the LOD structure from the
actual terrain data. They also let us create a different
LOD tree depth for different global regions. For exam-
ple, we could have 100-km-resolution data for the
entire globe but recursively insert higher resolution
data for smaller regions of interest, such as a one-km-
resolution data set for the conterminous United States
and a one-m-resolution data set for Yosemite Valley,
California.

It would be possible to use the VRML Inline node
to include the geotile files into the LOD hierarchy. How-
ever, VRML 97 does not specify when the Universal
Resource Locator (URL) of an Inline node should be
loaded, making this a browser-dependent feature. Cur-
rently, most browsers load all inline scenes at once. This
makes good sense for small scenes with a handful of
Inline nodes. However, if we have a data set of 10
Gbytes, the VRML browser will attempt to load all these
data into memory at once. This is obviously unaccept-
able for our application, so we must control when inline
files are loaded and unloaded. To do this, we developed

a new node, called QuadLOD, using VRML 97’s
EXTERNPROTO and scripting features. QuadLOD pro-
vides a terrain-specific LOD capability that efficiently
manages the loading and unloading of higher levels of
detail. When the user enters a certain volume around
the tile (determined by a ProximitySensor) Quad-
LOD loads only a tile’s four higher resolution children.
The node also uses a tile-caching mechanism so that tiles
aren’t needlessly reloaded. When the user approaches a
region of terrain, more detail is progressively loaded and
displayed in a coarse-to-fine fashion. Most VRML
browsers perform nonblocking network reads so that
the user can still interact with the scene while higher
resolution imagery and elevation loads.

Geotile files
Geotile files contain links to all data within a single

tile. The most basic geotile includes a single terrain tile
file for the region. However, it’s possible for a geotile to
store links to multiple alternative terrain tiles, such as
tiles referring to satellite, aerial, and map imagery, as
well as feature files for objects that exist on the terrain,
such as buildings, roads, and annotations.

By adding this extra layer to our global structure, we
simplify the task of maintaining and adding new data
sets. For example, when we want to add a new image
pyramid, we can generate the terrain tiles in isolation
and simply link them to appropriate geotiles. (If the new
data set requires higher resolution than the region pre-
viously required, we also must generate new tree files.)
In addition, because each data set is stored indepen-
dently and referenced only via the geotiles, we can selec-
tively display any combination of data sets. A node we
created, GeoTile, permits this selectivity by organiz-
ing the terrain tile and feature file links into sets of
Switch nodes.

IEEE Computer Graphics and Applications 33

Two terrain tile
pyramids

Hierarchy of
GeoTile filesA tree file A feature file

3 The relationship between tree,
geotile, terrain tile, and feature
files. Unidirectional arcs represent
inline links to files over the network.
Bold rectangles delineate file
boundaries.

¶19

¶20

¶21

¶22

¶23

Microsoft Corp. Exhibit 1004

Terrain tile files
Terrain tiles contain the actual terrain data for a sin-

gle data set tile at a particular detail level. This includes
the elevation geometry and the texture map imagery for
the specific terrain tile. The VRML 97 specification pro-
vides us with two potential primitives for representing
terrain geometry: the IndexedFaceSet and the
ElevationGrid. The latter node lets the user specify
a grid of height values above the x-z plane, whereas the
more general IndexedFaceSet node lets the user
define arbitrary polygons in 3D space. VRML 97’s Ele-
vationGrid was introduced specifically to represent
terrain models and offers a compact mechanism to
describe simple height field data. However, it has serious
limitations that prevent us from using it, including that
it assumes that the heights are relative to a flat plane—
an obvious problem when dealing with curved planets.
ElevationGrids are thus useful only for modeling
local areas, where the earth’s curvature is insignificant.
Because we want to support global data sets, we use the
IndexedFaceSet to build terrain geometry.

Feature files
Feature files contain VRML models for objects relat-

ed to a region of terrain. Examples include a region’s
cultural features, such as roads and lines of communi-
cation; weather simulations, such as clear air turbulence
isosurfaces and wind vectors; and other 3D data, such
as terrain annotations.

Integrating terrain features proves difficult because
features can extend beyond tile boundaries. For exam-
ple, a road might cover multiple tiles, or a large building
might sit on the boundary between two tiles. One way
to deal with this problem is to dissect the geometry for
all ground features along tile boundaries, forcing the
condition that all features in a tile are contained entire-

ly within that tile. Another solution is to simply include
a link to the same feature in all relevant geotiles. We
selected the latter approach because it does not con-
strain the cultural features to the same resolution range
as the terrain, and it requires no modification to the fea-
ture’s geometry. However, one problem is that the
browser would normally load, store, and render dupli-
cate copies of each feature for every loaded geotile in
which it occurs. To avoid this, we have designed our
GeoTilenode so that it keeps track of each request for
a feature file’s URL. We do this using static class struc-
tures in a Java script. We load feature files only on first
invocation, incrementing their reference count, and
unload a feature file only when its reference count
returns to zero. Figure 4 shows the fusion of terrain data
and cultural features that results.

Geographic coordinate systems
VRML defines a Cartesian coordinate system for mod-

eling objects in a 3D volume. In geographic terms, this
gives us a geocentric representation: a coordinate (x, y,
z) is assumed to be a 3D offset (in meters) from the
earth’s center. However, most elevation data are pro-
vided in some geodetic or projective coordinate system.
A geodetic coordinate system is related to the ellipsoid
used to model the earth (such as the latitude-longitude
system). A projective coordinate system projects the
ellipsoid onto some simple surface, such as a cone or a
cylinder. Examples include the Lambert Conformal
Conic or the Universal Transverse Mercator projections.
Such coordinate systems were designed for different
applications and offer particular advantages and restric-
tions. For example, some projections can represent only
small-scale regions; others are conformal, offering the
same scale in every direction; and others can be equal
area—the projected area corresponds to the earth’s
physical area over the entire projection. To use data in
these different coordinate systems, we must convert
coordinates in these systems into the VRML geocentric
coordinate system. Descriptions for performing many
of these transformations are available elsewhere.9 The
sidebar “What Shape Is the Earth?” discusses related
representation challenges.

Floating-point precision issues
The VRML 97 specification defines the SFFloat and

MFloat fields to represent floating-point numbers. How-
ever, these are only single-precision values; the dynamic
range of a single-precision floating-point number isn’t
sufficient to store accurate geocentric coordinates. For
example, the IEEE single-precision format defines a 23-
bit mantissa. This provides a resolution of approximate-
ly six digits (223 = 8.39 × 106). The earth’s diameter is
roughly 12,700,000m, and thus we can model terrain to
an accuracy of only tens or hundreds of meters. This accu-
racy can’t even represent the results from a civilian-grade
Global Positioning System (GPS), let alone faithfully rep-
resent ground features such as buildings or roads.

Most VRML browsers use only single-precision arith-
metic for modeling and matrix operations, and most
modern graphics hardware uses only single precision.
We must therefore implement accurate geocentric coor-

VRML

34 March/April 1999

4 A tiled terrain
model showing
geo-referenced
3D geometry
overlaid for
roads (orange)
and buildings
(yellow).

¶24

¶25

¶26

¶27

¶28

¶29

Microsoft Corp. Exhibit 1004

dinates using only single-precision data. We can do this
using a network of local coordinate systems (LCSs),
where the value range in any LCS lies within a single-
precision value. Thus, all of these LCSs can be trans-
formed into a viewpoint-dependent view coordinate
system in real time.

Using this approach, we can specify geocentric coor-

dinates to millimeter accuracy across the earth’s surface.
Also, it lets us store and transmit single-precision coor-
dinates, rather than double-precision values.

Browsing the world in VRML
Users can browse the terrain data produced by our rep-

resentation using a standard VRML plug-in for Internet

IEEE Computer Graphics and Applications 35

In a computer graphics system, the simplest
way to represent the earth is to produce a sphere
and then apply to it a texture map. This method is
adequate for a coarse representation. However, if
we want to model the planet down to submeter
accuracy, we must better understand the earth’s
shape and the coordinate systems that describe
it.1-3

Ellipsoids
The earth can best be modeled geometrically

using an ellipsoid of rotation. Such an ellipsoid is
traditionally specified by two of three variables: the
semi-major axis (a), the semi-minor axis (b), and
the inverse flattening (1/f = a / (a − b)). Over the
past 200 years, many different reference ellipsoids
have been formulated, each defining slightly
different values for these variables. The current US
Department of Defense standard is defined by the
World Geodetic System 1984 (WGS84), such that
a = 6378137.0m and b = 6356752.3142m.

Geoids
The ellipsoid describes an ideal surface, but

most elevation data are given relative to the
geoid, not the ellipsoid. The geoid is the
physically measurable surface corresponding to
mean sea level and is related to the earth’s
gravitational field. This complex, undulating
surface varies marginally from the ellipsoid over a
range of roughly 100m. Once again, there are
several slightly different geoid standards, such as
GEOID90, OSU89B, and WGS84.

Datums
A datum specifies a local or global reference

coordinate system for defining points on the
earth; these are called the horizontal datum and
the vertical datum.

The horizontal datum specifies the coordinate
system used to localize points on the earth’s
surface. It’s typically specified by a reference point
on the planet, the azimuth of a line from that
point, and a reference ellipsoid. There are literally
hundreds of horizontal datums in common usage.
Practically all of these are local in their extent, such
as the Ordnance Survey Great Britain 1936 datum
or the Australian Geodetic 1984 datum. However,
the WGS84 defines a global datum that is
generally accepted as the most accurate definition
now in use.

The vertical datum is the surface from which all
elevation values are measured. This is typically
taken as mean sea level—that is, the geoid.

References
1. J.P. Snyder, “Map Projections—A Working Manual,”

US Geological Survey Professional Paper 1395, US Gov-
ernment Printing Office, Washington, DC, 1987.

2. P.A. Birkel, “Sedris Geospatial Reference Model,” Sedris
Document Set, June 10, 1997. Available electronically at
http://www.sedris.org/wp_dlds.htm.

3. “Handbook for Transformation of Datums, Projections,
Grids and Common Coordinate Systems,” Tech.
Report TEC-SR-7, US Army Corps of Engineers, Topo-
graphic Engineering Center, Alexandria, Va., Jan. 1996.

What Shape Is the Earth?

b

a

Equator

Terrain surface

Geoid

Ellipsoid

¶30
¶31

Microsoft Corp. Exhibit 1004

browsers such as Netscape Communicator or Microsoft
Internet Explorer. We now describe some of the relevant
user-interaction issues related to VRML browsers.

Switching data sets
One of our goals is to let users switch between various

image data sets and terrain features. Letting users switch
the texture map for a single polygon in VRML is a trivial
exercise. However, elegantly making such a switch in a
complex pyramidal structure using Scriptnodes inside
the VRML scene proves more difficult. We thus turn to
the External Authoring Interface (EAI), which lets us
write a Java applet that runs in the Internet browser and
communicates with the VRML plug-in. Through this
interface, we can traverse the scene graph of the loaded
terrain and modify the switch node settings in each geot-
ile file, thus selecting different data sets.

One complication is that the EAI does not currently
let users access the scene graph loaded by an Inline
node. However, because we have implemented our own
Inline nodes, we can also implement an extra event-
Out, called children, that exposes the inlined VRML file.
We are thus free to inspect and modify any part of the
VRML scene.

Navigation issues
The VRML standard defines three default navigation

types: walk, examine, and fly. These types are useful as
generic navigation models; however, we introduce sev-
eral specialized functions to help users navigate a large
geographic database.

■ Terrain following. Because the earth is round, as we
navigate its surface we should expect to follow a curved
flight path. However, the defaults such as walk and fly
propel users along a linear flight path only. We want a
navigation method that will maintain a particular

height above the earth’s surface. To achieve this, we
must know the up vector for a particular region of ter-
rain—that is, the 3D normal to the plane that is tan-
gent to the earth’s surface at that region. VRML
implicitly assumes that the y-axis is up, but when deal-
ing with a round surface, the actual vector varies.

■ Altitude-based velocity. Users’ navigation velocity
should depend on their location relative to the terrain.
For example, when flying through a valley at a height
of 100m, a velocity of 100m/s could be considered rel-
atively fast. However, if the user were viewing the
entire globe from space at an altitude of 20,000 km,
zooming in at the same speed would be painfully slow.
We must therefore scale navigation velocity to achieve
a constant pixel flow across the screen.

■ Active maps. When flying over terrain, it’s often diffi-
cult for users to maintain a global context for their
position. We thus employ a map display, managed by
a Java applet. Through the EAI, we can obtain the user
location in the geographic environment. We might do
this, for example, using the position_changed
eventOut of a ProximitySensor placed around
the entire scene. We can then project this 3D geo-
centric coordinate onto the map display so users can
easily ascertain their location in the world. Users can
also click over the map and then move the viewpoint
directly to that location. We do this by updating and
binding a Viewpoint node in the VRML scene
graph.

Browsing the world in TerraVision
Figure 5 shows TerraVision II, a real-time, distributed

terrain visualization system that we have been devel-
oping over the past five years.8 TerraVision was designed
to enable interactive visualization of massive terrain
databases that can be distributed over a high-speed
wide-area network. TerraVision I was developed as part

VRML

36 March/April 1999

5 Screenshot of the TerraVision
system.

¶32

¶33

¶34

¶35

¶36

¶37

¶38

Microsoft Corp. Exhibit 1004

of the US Defense Advanced Research Projects Agency’s
Multidimensional Applications Gigabit Internet Con-
sortium (Magic) project and has been demonstrated
with data sets on the order of tens of Gbytes. TerraVi-
sion includes features such as an active map display, 2D
pan and zoom display, 3D flythroughs, and time-of-day
and fog selection. It also incorporates building models
and vehicles, animates vehicles based on live or record-
ed GPS data, and supports 6-degrees-of-freedom input
devices and head-mounted displays.

Generic VRML browsers cannot perform terrain-spe-
cific optimizations because they have no knowledge of
the underlying data’s representation and application.
TerraVision II extends TerraVision I functionality by sup-
porting our VRML 97 representations. In effect, it’s a
custom VRML browser specifically designed to optimally
navigate our VRML terrain databases.

TerraVision II offers the following advantages over a
standard VRML browser:

■ Optimized, compiled code. TerraVision II is a multi-
threaded application written in ANSI C. We designed
it for the sole purpose of rendering large geographic
databases in real time. As such, we can use more effi-
cient, optimized solutions to several generic real-time
graphics operations. For example, visibility culling is
performed using a fast quad-tree search of the mul-
tiresolution hierarchy.

■ Level of detail. The LOD selection in the VRML brows-
er is based on whether or not a user is in a volume
around the tile. However, TerraVision uses projected
screen size to decide when to reduce terrain detail.
This technique considers such factors as display size
and the angle at which the user views the terrain.

■ Tile stitching. Any tiled, multiresolution representa-
tion suffers from tearing problems. These occur when
adjacent tiles of different resolution do not share all
the same vertices and thus create holes in the terrain
along tile boundaries. In TerraVision, we use special-
ized techniques to stitch these holes, so it displays a
continuous landform. A standard VRML browser will
not generally perform this operation.

■ Network lag tolerance. TerraVision always maintains
in memory a low-resolution terrain representation
and uses a progressive coarse-to-fine algorithm to
load and display new data. Therefore, if some high-
resolution tiles have yet to arrive over the network,
TerraVision simply uses the highest resolution data it
has so that the user can continue to interact with the
terrain. In effect, TerraVision implements a basic form
of streaming for both geometry and imagery.

■ Efficient tile caching. TerraVision maintains a tile
cache, which eliminates the need to reload and parse
data for terrain regions that the user has recently
browsed.

■ Prediction and prefetching. TerraVision attempts to
predict users’ future moves by a simple extrapolation
of their current flight path. It then prefetches tiles, so
they are immediately available for rendering.

TerraVision II is not required to view the VRML ter-
rain data sets; it simply increases browsing efficiency.

Any standard VRML browser can interact with these
data. However, TerraVision II introduces an attractive
scalability feature to terrain data set navigation.

TerraVision II can be implemented on a graphics
workstation connected to a gigabit-per-second ATM net-
work with high-speed disk servers for fast response
times. However, TerraVision can also be implemented
on a PC connected to the Internet, or a standard VRML
browser on a laptop machine can be used to browse the
same data. This makes the system particularly useful in
military mission planning and battle damage assess-
ment, emergency relief efforts, and other distributed
time-critical conditions.

Conclusions and future work
As we show here, it’s possible to represent massive,

distributed terrain databases in VRML. It’s also possible
for users to navigate efficiently around these structures
using either a standard VRML browser or our special-
ized TerraVision II browser.

In the future, we might apply or extend this work in
several ways.

■ Distributed interactive simulation (DIS). The Java-DIS-
VRML working group is working on ways to let users
share state information about a VRML world—such
as entity positions and orientations—across a net-
work. This is highly relevant to our work, as it would
let us introduce dynamic entities, such as moving
vehicles, which multiple users could experience
simultaneously over the network.

■ Data on demand. Currently, we statically generate all
required terrain data offline in VRML format. How-
ever, it’s possible to transparently generate all VRML
data on the fly from some underlying geographic
database. We might do this via a Common Gateway
Interface script that interprets the URL path name as
a database lookup request and generates the VRML
representation on demand.

■ Other planets. Although we have concentrated on rep-
resenting the earth, we could easily apply the design
and concepts introduced here to model other celes-
tial bodies.

By making the work we describe here freely available,
we hope to help foster further innovation and, through
the GeoVRML Working Group, to see greater support
for geographic applications in upcoming revisions of the
VRML specification. ■

Acknowledgments
We thank Kiril Vidimce for his work on the VRML

nodes. Our work was funded in part under the following
Darpa programs: Multidimensional Applications Giga-
bit Internet Consortium II, subcontract 12165SRI of con-
tract F19628-95-C-0215, and Battle Assessment and
Data Dissemination contract no. MDA972-97C-0037.
Darpa has approved this article for public release. Ter-
rain imagery and elevation data were supplied by the
US Geological Survey Earth Resources Observation Sys-
tem Data Center.

IEEE Computer Graphics and Applications 37

¶39

¶40

¶41

¶42

¶43

¶44

¶45

¶46

¶47

¶48

¶49

¶50

¶51

¶52

¶53

¶54

Microsoft Corp. Exhibit 1004

References
1. T.M. Rhyne, “Going Virtual With Geographic Information

and Scientific Visualization,” Computers and Geosciences,
Vol. 23, No. 4, 1997, pp. 489-491.

2. W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decima-
tion of Triangle Meshes,” Proc. Siggraph 92, Addison Wes-
ley Longman, Reading, Mass., 1992, pp. 65-70.

3. A. Guéziec et al., “Simplification Maps for Progressive
Transmission of Polygonal Surfaces,” Proc. Third Symp. Vir-
tual Reality Modeling Language, ACM, New York, 1998, pp.
25-31.

4. P. Lindstrom et al., “Real-Time Continuous Level of Detail
Rendering of Height Fields,” Proc. Siggraph 92, Addison
Wesley Longman, Reading, Mass., 1996, pp. 109-118.

5. H. Hoppe, “View-Dependent Refinement of Progressive
Meshes,” Proc. Siggraph 92, Addison Wesley Longman,
Reading, Mass., 1997, pp. 189-198

6. J.S. Falby et al., “NPSNet: Hierarchical Data Structures for
Real-Time Three-Dimensional Visual Simulation,” Com-
puters and Graphics, Vol. 17, No. 1, 1993, pp. 65-69.

7. L.E. Hitchner and M.W. McGreevy, “Methods for User-
Based Reduction of Model Complexity for Virtual Plane-
tary Exploration,” Proc. SPIE, Vol. 1913, Soc. Photo-optical
Instrumentation Engineers, Bellingham, Wash., 1993, pp.
622-36.

8. Y.G. Leclerc and S.Q. Lau, “TerraVision: A Terrain Visual-
ization System,” Tech. Note 540, AI Center, SRI Interna-
tional, Menlo Park, Calif.; available electronically at
http://www.ai.sri.com/pubs/technotes/aic-tn-
1994:540/document.ps.gz.

9. J.P. Snyder, “Map Projections—A Working Manual,” US
Geological Survey Professional Paper 1395, US Govern-
ment Printing Office, Washington, DC, 1987.

Martin Reddy is a computer sci-
entist in the Artificial Intelligence
Center’s Perception Program at SRI
International. His work focuses on
the real-time display of massive 3D
terrain databases distributed over
wide-area networks. He received his

BS in computer science from the University of Strathclyde
and his PhD in computer graphics from the University of
Edinburgh, Scotland.

Yvan G. Leclerc is a senior com-
puter scientist at SRI’s Artificial Intel-
ligence Center, where he has worked
since 1985 in various areas of com-
puter vision. His recent work focuses
on recovering the 3D shape and
material property of objects from

multiple calibrated images. He also works in high-speed,
network-based terrain visualization systems and is cur-
rently a principal investigator on three Darpa projects. He
received his BS, ME, and PhD degrees in electrical engi-
neering from McGill University, Montreal.

Lee Iverson is a computer scientist
at SRI’s Artificial Intelligence Center.
His areas of interest include comput-
er vision (especially edge detection,
relaxation labeling, and stereo) and
graphical environments for geo-
graphical information systems. He

chairs the GeoVRML Working Group of the Web3D Con-
sortium. He received his BEng from Princeton University
and his ME and PhD from McGill University, Montreal.

Nat Bletter has been a research
engineer working on SRI’s general
virtual reality capabilities since 1992
and has implemented binaural
sound, speech recognition, and
graphic interfaces. He has also
worked on data visualization, per-

ceptual research, multiuser virtual reality systems, surgical
simulation, force feedback, and motion sickness. He is the
principal investigator on SRI’s Share collaborative virtual
environment toolkit and has extensive experience in VR
hardware and software, including interfacing input and
output devices, graphics programming, and the human
computer interface.

Readers may contact Reddy at SRI International, 333
Ravenswood Avenue, Menlo Park, CA 94025, e-mail
reddy@ai.sri.com.

VRML

38 March/April 1999

Microsoft Corp. Exhibit 1004

